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We introduce a dynamical model of a Bose-Einstein condensate based on the one-dimensional �1D� Gross-
Pitaevskii equation �GPE� with a nonlinear optical lattice �NOL�, which is represented by the cubic term whose
coefficient is periodically modulated in the coordinate. The model describes a situation when the atomic
scattering length is spatially modulated, via the optically controlled Feshbach resonance, in an optical lattice
created by interference of two laser beams. Relatively narrow solitons supported by the NOL are predicted by
means of the variational approximation �VA�, and an averaging method is applied to broad solitons. A different
feature is a minimum norm �number of atoms�, N=Nmin, necessary for the existence of solitons. The VA
predicts Nmin very accurately. Numerical results are chiefly presented for the NOL with the zero spatial average
value of the nonlinearity coefficient. Solitons with values of the amplitude A larger than at N=Nmin are stable.
Unstable solitons with smaller, but not too small, A rearrange themselves into persistent breathers. For still
smaller A, the soliton slowly decays into radiation without forming a breather. Broad solitons with very small
A are practically stable, as their decay is extremely slow. These broad solitons may freely move across the
lattice, featuring quasielastic collisions. Narrow solitons, which are strongly pinned to the NOL, can easily
form stable complexes. Finally, the weakly unstable low-amplitude solitons are stabilized if a cubic term with
a constant coefficient, corresponding to weak attraction, is included in the GPE.
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I. INTRODUCTION

The possibility to create matter-wave solitons in Bose-
Einstein condensates �BECs� has attracted a great deal of
attention due to a number of successful experimental results
reported in effectively one-dimensional �1D� settings. First,
dark solitons were made in repulsive condensates �1�, i.e.,
ones with a positive scattering length that determines the
sign of the effective cubic nonlinearity in the corresponding
Gross-Pitaevskii equation �GPE�. This was followed by the
creation of bright solitons in attractive BECs �in lithium�
with a negative scattering length �2�. Recently, broad solitons
of the gap type �a different species of bright solitons� were
created in a repulsive rubidium condensate loaded in an op-
tical lattice �OL�, i.e., a spatially periodic atomic potential of
the dipole interaction induced by a superposition of counter-
propagating coherent laser beams illuminating the conden-
sate, with a frequency appropriately detuned from the inter-
nal frequency of atoms �3�.

For the experimental and theoretical considerations alike,
an important tool is the Feshbach resonance �FR�, which
makes it possible to control the size of the scattering length
and, moreover, switch its sign, by means of external mag-
netic field �4� �in particular, switching from repulsion
to weak attraction was instrumental in the creation of the
bright solitons in lithium �2��. Application of ac magnetic
field may provide for periodic alternation of the nonlinearity
sign in the GPE via the FR. It has been demonstrated
theoretically that the ac variety of the FR technique gives
rise to interesting states in the 1D geometry �5�, and stabi-
lizes two-dimensional �2D� solitons against collapse, even
without an external trap �6�. It was also shown that the same

technique may stabilize single- and multihumped 3D matter-
wave solitons, provided that it is applied in combination with
a quasi�-1D OL potential �7�.

Some time ago it was predicted �8�, and recently demon-
strated in an experiment �9�, that the FR controlling colli-
sions between atoms and, eventually, the size and sign of the
nonlinearity coefficient in the GPE can be induced not only
by dc magnetic field, but also by an appropriately tuned op-
tical signal. This suggests a possibility to create a superposi-
tion of two coherent beams inducing the optical FR, which
will be a nonlinear optical lattice �NOL�, i.e., a configuration
with the local nonlinearity coefficient periodically modulated
as a function of the spatial coordinate�s�.

Recently, nonlinear photonic lattices have drawn consid-
erable interest in optics, where they were created experimen-
tally and studied theoretically in photorefractive �PhR� me-
dia, see a recent review �10� and references therein, and
some other recent papers stressing the nonlinear character of
photonic lattices in this setting �11�. The lattice in a PhR
crystal is created by illuminating it with counterpropagating
coherent laser beams in the ordinary polarization �a probe
beam that creates solitons is then launched in the extraordi-
nary polarization�. A possibility to create a nonlinear lattice
this way is very natural, as PhR media feature saturable
nonlinearity �10�.

Unlike the PhR media, in BECs the self-focusing nonlin-
earity is strictly cubic �except for the case of a truly one-
dimensional Boson gas with very strong ultralocal repulsion,
which obeys the GPE with a quintic self-defocusing nonlin-
ear term �12��. For this reason, the use of the nonlinearity
coefficient spatially modulated by the standing light wave
via the optically controlled FR is a unique possibility to cre-
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ate a NOL for matter waves in BEC. The objective of this
work is to study bright solitons in this setting in the 1D case.

Strictly speaking, the objects that we are going to study
are not solitons in the mathematically rigorous meaning, but
rather “solitary waves,” as they appear in a nonintegrable
model. Nevertheless, the application of the word “soliton” to
localized pulses in BECs is commonly adopted in physics
literature �see, e.g., Refs. �1–3,6,7,14��, therefore we also use
this word in the present paper.

The paper is organized as follows. In Sec. II, the model is
formulated, and analytical results for 1D solitons are ob-
tained by means of the variational approximation �VA�,
which applies to narrow solitons, and by means of the aver-
aging method for the opposite case of very broad solitons.
Basic numerical results, for the model with zero average
value of the nonlinearity coefficient, are reported in Sec. III.
The results show that stability of the solitons strongly de-
pends on their amplitude: while high-amplitude solitons are
stable, and low-amplitude ones are not, featuring very slow
decay, solitons with intermediate values of the amplitude are
more unstable and spontaneously rearrange themselves into
robust periodically oscillating breathers. In Sec. IV, addi-
tional results are reported. In particular, we demonstrate that
the low-amplitude solitons may move freely through the
NOL, and collisions between them are quasielastic. On the
other hand, high-amplitude solitons, which are strongly
pinned by the lattice, can easily form stable bound com-
plexes. It is also shown that the addition of a small nonzero
average value of the nonlinearity coefficient which corre-
sponds to self-attraction leads to stabilization of broad small-
amplitude solitons. The paper is concluded by Sec. V.

II. MODEL AND ANALYTICAL APPROXIMATIONS

A. Gross-Pitaevskii equation with the nonlinear optical lattice

We start with the effective one-dimensional GPE for the
single-atom wave function �, written in the well-known nor-
malized form �with � and the atomic mass set equal to 1, see
further details in the above-mentioned papers�, in which the
coefficient in front of the cubic term may be a function of the
coordinate x, due to the FR controlled by the standing light
wave, as explained above,

i�t = −
1

2
�xx + g�x����2� . �1�

This equation does not include an external trap, as we are
interested in stable solitons supported solely by the NOL.
The spatial distribution of the optical intensity I�x� in the
standing wave with the wavelength �, which controls the FR,
is, as usual, given by

I = I0cos2�2�x/��; �2�

using the remaining scale invariance in Eq. �1�, we set
��2�. The dependence of the FR-controlled atomic scatter-
ing length �in other words, of the nonlinearity coefficient g in
Eq. �1�� on I is �8�

g = g0 + g1I/�� + I� , �3�

where g0 is its value in the absence of the light signal, g1 is
a constant, and �, which may be either positive or negative,
measures the resonance detuning. Thus, assuming a weak
optical signal, I0� ���, Eqs. �2� and �3� give rise to the fol-
lowing form of the FR-controlled GPE, in which the coeffi-
cient in front of the x-dependent part of the nonlinearity co-
efficient was set equal to −1, by rescaling the wave function
and shifting x by �, if g1 was originally positive:

i�t = −
1

2
�xx + �g0 − cos�2x�����2� . �4�

Note that the intensity-independent nonlinear coefficient g0
may be altered independently, by means of the magnetic-
controlled FR. Taking this possibility into regard, in a larger
part of this work we focus on the case of g0=0, as it corre-
sponds to a completely different situation in comparison with
earlier studied models. However, some results will also be
given for g0�0. Equation �4� has two dynamical invariants,
viz. the Hamiltonian

H =
1

2
�

−�

+�

���x�2 + �g0 − cos�2x�����4�dx , �5�

and the norm �number of atoms�,

N = �
−�

+�

���x��2dx . �6�

Generally speaking, the NOL may come together with its
linear counterpart, i.e., a term proportional to cos�2x�� in Eq.
�4�. However, this term may be neglected if the light wave-
length necessary for the optically induced FR which affects
the interaction between atoms �usually, it corresponds to blue
light� is far from the wavelength �usually, corresponding to
mid-infrared� which induces the linear OL potential for a
single atom.

B. Variational approximation

Stationary solutions to Eq. �4� are sought for as
��t ,x�=e−i	t
�x�, with the real function 
 obeying the equa-
tion

	
 +
1

2

d2


dx2 − �g0 − cos�2x��
3 = 0. �7�

To apply the variational approximation �VA�, we rely upon
the fact that the stationary equation �7� can be derived from
the Lagrangian

L = �
−�

+� �2	
2 − 	d


dx

2

+ �cos�2x� − g0�
4�dx . �8�

The variational ansatz for the soliton is adopted in the usual
Gaussian form,
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�x� = A exp	−
x2

2W2
 , �9�

with the amplitude A and width W. The substitution of the
ansatz in Eq. �8� yields an effective Lagrangian,

Leff = 2��	A2W −
��

2

A2

W

−��

2
g0A4W +��

2
A4W exp	−

W2

2



=2	N −
N

2W2 −
g0N2

�2�W
+

N2

�2�W
exp	−

W2

2

 , �10�

where the amplitude was eliminated in favor of the norm of
ansatz �9�, which is defined as per Eq. �6�,

N = ��A2W . �11�

The variational equations, �Leff /�N=�Leff /�W=0, yield a
system

N =
�2�

W��1 + W2�e−W2/2 − g0�
, �12�

	 = −
3g0 + �W2 − 3�e−W2/2

�3g0 − 4�1 + W2�e−W2/2�

1

W2 . �13�

The first prediction of Eq. �12� is that there is no physical
solution in the case when the constant nonlinearity coeffi-
cient corresponds to strong self-repulsion, g0�2/�e1.21.
For 0�g02/�e, Eq. �12� predicts a family of solitons in
the interval NminN�, where

Nmin =
�2�

W0��1 + W0
2�e−W0

2/2 − g0�
, �14�

W0 being a positive root of the transcendental equation

�1 + 2W0
2 − W0

4�exp�− W0
2/2� = g0. �15�

In fact, direct consideration of Eq. �7� shows that a soliton
solution may exist only in the case when the nonlinearity
coefficient, g0−cos�2x�, is negative at least at the point of a
local maximum of �
�x��. Indeed, the localized solution may
only exist if 	0, and the curvature of the wave’s profile is
negative at the maximum point, hence if g0−cos�2x� is posi-
tive at this point, all the terms on the left-hand side of Eq. �7�
have the same sign, and the equation cannot hold. Thus it is
very natural to assume that solitons exist if g01, which
allows the expression g0−cos�2x� to be negative in some
regions. The fact that VA predicts the maximum value of g0
to be 1.21, i.e., larger than 1, is an error introduced by the
approximation �although the error is not large�. For this rea-
son, we continue the analysis of the VA for g01.

A consequence of Eq. �12� is that the width of the soliton
takes values WWmax, where Wmax is a root of the equation

�1 + Wmax
2 �exp�− Wmax

2 /2� = g0 �16�

�from comparison with Eq. �15�, it is obvious that
W0Wmax�. Further consideration of Eq. �12� demonstrates
that each value of norm N exceeding Nmin gives rise to two
different solutions with different widths, which belong to the
intervals, respectively, WW0 and W0WWmax. It is
natural to expect that the solutions may be stable in the
former interval, which is characterized by dW /dN0
�“heavier” solitons are narrower�, and must be unstable in the
latter one, which features the inverse dependence, with
dW /dN�0. Below, direct numerical simulations will con-
firm this expectation. The stability change for the soliton
solutions at W=W0 is also confirmed by the well-known
Vakhitov-Kolokolov �VK� criterion �13�: the transition from
WW0 to W�W0 entails a change from d	 /dN0 to
d	 /dN�0, which implies the transition from stable solu-
tions to unstable ones, according to the criterion.

For g0=0 �the basic case to be studied in detail below by
numerical methods�, Eqs. �15� and �16� yield W0

2=1+�2 and
Wmax=� �in fact, the VA is irrelevant for large W, see be-
low�. Accordingly, Eq. �14� produces a prediction for the
minimum value of the norm necessary for the existence of
solitons,

Nmin�g0 = 0� = ����2 − 1�3/2e�1+�2�/2  1.580. �17�

In conclusion, we note that for g00, when the nonlinear
interaction is, on average, self-attractive, the VA yields
completely different results: as seen from Eq. �12�, there is
no lower limit Nmin in this case, as W→� corresponds to
N→0. Further, if negative g0 belongs to the interval
0−g04�2+�6�exp�−�3+�2� /2�1.96, Eq. �15� with
g00 yields two roots, �W0�min and �W0�max. According to
the above criteria, the solutions are stable in the regions
0W �W0�min and �W0�maxW�, and unstable in be-
tween, at �W0�minW �W0�max. The former stability region
is similar to that found above for g0�0, while the latter one
is specific to negative g0. In particular, for 0−g0�1, the
additional stability region is

Wmax  2 ln�1/�g0��  W  � . �18�

For −g0�4�2+�6�exp�−�3+�2� /2�1.96, the intermediate
region does not exist, and all the solitons are expected to be
stable, being essentially similar to the usual solitons in the
one-dimensional GPE with a constant coefficient of the self-
attraction.

C. An approximation for broad solitons

The VA based on the simple Gaussian ansatz �9� is rel-
evant as long as the width W does not essentially exceed the
period of the underlying NOL, which is �, in the notation
adopted above. If W is larger, the undulated shape of the
soliton, induced by the nonlinear OL, cannot be disregarded,
see examples below in Figs. 6 and 7. Indeed, even if the
amplitude of the undulations is relatively small, which is the
case in those figures, its contribution to the Lagrangian term
accounting for the nonlinearity �the last term in expression
�8�� is crucially important for g0=0, as, disregarding the un-
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dulations in the soliton’s shape, this term, which is the inte-
gral convolution of a slowly varying function 
4�x� and rap-
idly oscillating one, cos�2x�, will be exponentially small. In
particular, the above-mentioned value W0�g0=0�=�1+�2
1.554 definitely satisfies the condition W0�, therefore
the prediction �17� for the minimum norm of the soliton in
the case of g0=0 is a meaningful one.

In the opposite case of very broad solitons, W��, it is
natural to apply the averaging method, searching for a solu-
tion in the form of

��x,t� = ��0��x,t� + ��1��x,t�cos�2x� + … , �19�

where ��0� and ��1� are slowly varying functions of x �and t�,
in comparison with the rapidly oscillating function cos�2x�.
The substitution of expansion �19� in Eq. �4� yields, first, a
relation

��1� =
1

2
���0��2��0�. �20�

Further, substituting relations �19� and �20� in Eq. �4� and
collecting slowly varying terms, the resulting equation for �0
takes a simple form for g0=0:

i�t
�0� = −

1

2
�xx

�0� −
3

4
���0��4��0�, �21�

which is a quintic GPE. A family of exact soliton solutions to
Eq. �21� can be easily found for negative values of the
chemical potential 	,

�sol�x,t� = e−i	t�− 	�1/4�2 sech�2�− 	x� . �22�

The norm of this solution does not depend on 	,

Nsol � � . �23�

The fact that dNsol /d	�0 implies neutral VK stability.
Actually, Eq. �21� with the self-attracting quintic nonlinearity
gives rise to weak collapse in the one-dimensional setting
�15�. Because of the possibility of the collapse, soliton solu-
tions �22�, being neutrally stable against exponentially grow-
ing perturbations, are unstable against slowly growing �sub-
exponential� perturbations.

If small average nonlinearity, corresponding to the term
with g0�0 in Eq. �4�, is retained in the model, the above
averaging procedure leads to an effective cubic-quintic �CQ�
equation:

i�t
�0� = −

1

2
�xx

�0� + g0���0��2��0� −
3

4
���0��4��0�. �24�

If the average nonlinearity is attractive, g00, the quintic
term in Eq. �24� may be neglected, which gives rise to the
usual stable nonlinear-Schrödinger solitons for 	0,

��x,t� =�2	

g0
e−i	tsech��− 2	x� . �25�

In the case of g0�0 �repulsive average nonlinearity�, ex-
act soliton solutions to Eq. �24� can be easily found too �ac-
tually, they are an analytical continuation of the well-known
solutions of the CQ equation with opposite signs in front of
the nonlinear terms �16��,

�sol�x,t� = 2e−i	t� − 	

�g0
2 − 4	cosh��− 2	x� − g0

, �26�

where 	 must again be negative. Note that the amplitude A
of this solution is limited from below,

A2 = �g0
2 − 4	 + g0 � 2g0. �27�

The norm of the soliton �26� is

Nsol = �2�� + 2 tan−1	 g0

�− 2	

� �28�

�observe that the norm of the soliton family is limited from
below and from above, �2�Nsol2�2��. It follows from
Eq. �28� that dNsol /d	�0, hence all these solitons, unlike
solution �25�, are unstable, as per the VK criterion.

III. BASIC NUMERICAL RESULTS

In this section, we focus on the case of g0=0, which is
essentially different in comparison with previously studied
1D versions of the GPE. First of all, the stationary equation
�7� was solved in a numerical form. That is, the solutions to
the second-order differential equation which approach 0 for
�x�→� were numerically searched for various values of

�0�=A by changing the value of 	. The results are summa-
rized in Fig. 1, which shows the norm of the soliton vs its
amplitude, together with the same dependence as predicted
by the VA in an implicit form, based on Eqs. �11� and �12�
with g0=0. Examples of the numerically found narrow and
broad solitons, along with their approximations based, re-
spectively, on the VA and averaging method, are shown in
Fig. 2.

FIG. 1. �a� The norm of the stationary soliton solution to Eq. �7�
vs its amplitude, for g0=0. Rhombuses �connected by the continu-
ous line as a guide to the eye� are values found from the direct
numerical solution, and the dashed curve shows the prediction of
the variational approximation. The branch of the latter solution to
the left of N=Nmin is an irrelevant one �it corresponds to broad
solitons for which the variational approximation is irrelevant, as
explained in the text�. �b� The chemical potential vs the number of
atoms for the numerically found soliton solutions.
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Quite a noteworthy feature evident in Fig. 1 is that the
VA predicts the minimum norm very accurately, see Eq. �17�
�according to the VA, this value is attained at
A= ��2−1�e�1+�2�/40.757, which is also fairly accurate, in
comparison with the numerical results in 1�, and becomes
irrelevant �formally predicting a large width, for which an-
satz �9� does not apply� almost immediately after that point.

The VK criterion, implemented for both the numerically
found soliton family �see Fig. 1�b�� and its VA-predicted
counterpart, forecasts the solution branch to be stable to the
right of the point N=Nmin and unstable to the left of it.
Consideration of the soliton’s width W as a function of N
predicts the same result in a different form, less mathemati-
cally rigorous but more physically intuitive one. Indeed, the
right and left branches have, respectively, dW /dN0 and
dW /dN�0, and, as was already mentioned above, a stable
soliton family is expected to satisfy the former condition,
while solitons whose width increases with the norm are un-
likely to be stable. These nonrigorous but intuitive conditions
may also be formulated in terms of the N�A� dependence:
solitons are stable if the norm increases with the amplitude,
and unstable in the opposite case �recall that the VA-
predicted branch to the left of N=Nmin is irrelevant, even if it
shows dN /dA�0�. The stability conditions in the latter form
�which are fully corroborated by numerical results� are con-
venient, as they make it possible to read off the stability of
the solitons directly from Fig. 1 for g0=0, or counterparts of
this plot for g0�0 �see Fig. 9 below�.

Simulations of evolution of the stationary solitons, with
small random initial perturbations explicitly added to them,
for the sake of the stability test, completely confirm the
above expectations about the stability and instability of the
two parts of the soliton family. In particular, the unstable
solitons with the initial amplitude from the interval
0.4A�0�0.75 spontaneously transform into apparently
stable breathers, as shown in Fig. 3. This observation is no-
table, as the the instability of the solitons to the left of
N=Nmin in Fig. 1 was predicted by the VK criterion, that
captures only instabilities accounted for by eigenmodes of
small perturbations with a real instability growth rate, i.e.,
such an instability cannot immediately transform an unstable
soliton into an oscillatory state, unlike the case of instability

against perturbations with complex eigenvalues. In fact, a
short initial stage of the evolution is indeed characterized by
monotonous growth of the perturbation, which, however,
quickly switches into large-amplitude oscillations, see an ex-
ample �corresponding to A�0�=0.5� in Fig. 4.

Solitons with the initial amplitudes from the interval
0.3A�0�0.4 are unstable too, but they do not form
breathers. Instead, they suffer systematic but slow decay into
radiation, gradually decreasing the amplitude and getting
broader, as can be seen �for A�0�=0.35� in Fig. 4. This con-
clusion is also confirmed by the plot showing the amplitude
of internal oscillations of the breather vs A�0�, in Fig. 5
�together with the breather’s time-average amplitude�: the
oscillation amplitude vanishes at A�0�0.4. It is relevant to
stress that the amplitude of the oscillations displayed in this
figure does not depend on the particular form of small per-
turbations added to the unstable soliton at the initial moment.
Of course, characteristics of the established breather will be
different if the onset of instability is initiated by a nonsmall
�large-amplitude� perturbation.

For A�0�0.3, the initial soliton stays practically stable,
as can be seen in Fig. 4, where an example is displayed for
A�0�=0.2. We assume that, strictly speaking, broad solitons
from this region are unstable too, but the instability is ex-
tremely weak. This conjecture is supported by the fact that,
although the soliton family in this region has a positive slope
dW /dN—which, as conjectured above, implies the
instability—the slope is actually very small �see Fig. 1,
where the curve N�A� is almost horizontal for A�0.3�. Note

FIG. 2. �a� A typical example of a stable soliton corresponding
to A=1. The numerically found soliton profile and its counterpart
predicted by the variational approximation based on the Gaussian
ansatz �9� are shown by the solid and dashed curves, respectively.
�b� A typical example of a broad soliton �solid line� corresponding
to A=0.15 and the approximation �dashed line� based on the aver-
aging method.

FIG. 3. A typical example of a persistent breather, into which an
initial unstable soliton with the amplitude A=0.6 has developed, is
shown by means of plots of ���x , t�� vs x and t.

FIG. 4. The evolution of the amplitude of unstable solitons for
different values of the initial amplitude A�0�.
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that both the nearly constant value of N for the broad solitons
in the region of A�0�0.3 and their weak instability can be
readily explained by the analytical approximation for broad
solitons, developed above in the form of Eq. �21�. Indeed,
the family of soliton solutions to Eq. �21� has a constant
norm, as per Eq. �23�, although the numerically obtained
constant 2.2 of the norm is rather smaller than the theoretical
estimate �. As was explained above, these solitons are char-
acterized by weak subexponential instability.

IV. ADDITIONAL RESULTS

The basic results reported above suggest consideration of
additional issues. In particular, a natural question is whether
a soliton can move without loss across the underlying lattice.
As is known, in the case of linear OLs, the soliton becomes
mobile below a certain threshold, where the soliton’s ampli-
tude is sufficiently small and, accordingly, its width is large
enough �14�. A similar effect is observed in the present
model including the NOL: the almost-stable broad solitons
with A�0�0.3 can be readily set in motion, and propagates
indefinitely long without any conspicuous loss, as illustrated
by Fig. 6 for A�0�=0.25. No clearly defined maximum ve-
locity is revealed by the simulations, i.e., the soliton can be
accelerated, by means of initially multiplying it by exp�iKx�,
with a sufficiently large real K, to virtually any value of the
velocity.

The availability of the broad moving solitons makes it
possible to consider collisions between them. The result is
that collisions are quasielastic, as shown in Fig. 7 �motion of
solitons in a model including the cubic nonlinearity and a
linear model was recently studied in Ref. �17��. In particular,
no visible radiation loss produced by the collisions could be
detected. The collisions produces a small shift of the collid-
ing solitons, but this effect is weak and does not seem a
physically significant one, in the present context.

On the contrary to the above results, both the absolutely
stable narrow solitons with A�0.75, and breathers generated
by unstable solitons with 0.4A�0�0.75 cannot be made
moving, i.e., solitons and breathers with a sufficiently large
amplitude are firmly pinned by the nonlinear lattice. An at-
tempt to shove a narrow soliton, multiplying it by exp�iKx�,
leads to strongly perturbed and still pinned soliton if K is
smaller than a certain critical value Kcr. If K�Kcr, the shove
completely destroys the soliton. Examples characterizing this
property of the narrow solitons are displayed in Fig. 8.

The strong pinning of narrow solitons facilitates creation
of complexes including several of them. Figure 9 displays
two examples of stable bound states of two and three soli-
tons, with the phase shift of �=� between adjacent ones. A
bound state of two or three in-phase solitons, with �=0, can
also be found, but it is unstable. We note that, in the case of
linear lattices, a general principle states that bound com-
plexes may only be stable with �=�, and they are always
unstable for �=0 �18�. The key point in the proof of this

FIG. 7. An example of an elastic collision between two moving
broad solitons, with the amplitude A=0.25.

FIG. 5. The amplitude �A of oscillations of the breather �shown

by ��, together with the breather’s amplitude Ā averaged in time
�shown by ��, vs the initial amplitude of the unstable soliton. Note
that, as long as the breather is different from a stable stationary
soliton, the time-average amplitude is larger than the initial one.

FIG. 6. A freely moving soliton, displayed by means of plots of
���x , t��, with the amplitude A=0.25.

FIG. 8. The result of the attempt to “shove” a narrow stable
soliton with the amplitude A=2, multiplying it by exp�iKx�: �a�
K=1; �b� K=1.7. In this case, the critical value of the shove
strength that leads to complete destruction of the soliton, is
Kcr1.65.
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principle is the fact that adjacent solitons with �=� repel
each other; as this feature remains true in the present case �it
does not depend on the character of the lattice�, it is quite
natural that the same necessary condition, �=�, distin-
guishes stable soliton complexes in the NOL. It is also rel-
evant to mention that stable multisoliton complexes were
recently investigated in a model combining a saturable non-
linearity and linear lattice �19�.

Last, the general model, which is based on GPE �4� in-
cluding the term with g0�0, was investigated too. For small
negative g0, the basic plot showing N vs A is modified
�against the case of g0=0, displayed above in Fig. 1� as
shown in Fig. 10�a�. An evident implication of the modified
N�A� dependence is that small-amplitude large-width soli-
tons, corresponding to the newly appearing segment of the
plot with dN /dA�0 �the region A0.4 in Fig. 10�a��, are
stable �the soliton family whose norm grows with the ampli-
tude is expected to be stable, as per the above discussion�.
The stability of these solitons was confirmed by direct simu-
lations, and also by the VK criterion—see Fig. 10�b�, where
the new branch of the stable solitons corresponds to the top

part of the curve, with d	 /dN0. It is relevant to mention
that the VA developed above correctly predicts the emer-
gence of the extra stability region of broad solitons at small
negative g0, see Eq. �18�.

V. CONCLUSION

In this work, we have introduced a 1D model based on the
Gross-Pitaevskii equation �GPE� which includes a nonlinear
optical lattice �NOL�, i.e., the nonlinear term with the coef-
ficient in front of it periodically modulated in the spatial
coordinate. The model describes a Bose-Einstein condensate
�BEC� in which the scattering length is spatially modulated,
through the optically controlled Feshbach resonance, by the
optical lattice created by interference of two counterpropa-
gating coherent laser beams.

The existence and stability of relatively narrow solitons
supported by the NOL were predicted by means of the varia-
tional approximation �VA�, and for broad solitons the predic-
tion was based on the averaging method. A different feature
in models based on the GPE in one dimension is the exis-
tence of a minimum norm �number of atoms�, N=Nmin, nec-
essary for the existence of solitons, in the case when the
average nonlinearity coefficient g0 is zero or positive, corre-
sponding to self-repulsion. The VA predicts this threshold
value quite accurately.

Numerical results were presented, chiefly, for the model
with g0=0. Solitons with the amplitude exceeding its value
at N=Nmin are stable �as predicted by the VA�, while unstable
solitons with smaller, but not very small, amplitudes sponta-
neously transform themselves into persistent breathers. For a
still smaller initial amplitude of the soliton, a breather is not
formed, and the soliton slowly decays into radiation. For
very small soliton amplitudes, the decay is extremely slow,
making the soliton a practically stable object. In the latter
case, the solitons may freely move across the NOL, colli-
sions between them being quasielastic. On the other hand,
stable narrow solitons, which are strongly pinned to the non-
linear lattice, can easily form stable complexes �at attempt to
set narrow solitons in motion strongly perturbs them, and
eventually leads to their destruction, but does not create
moving objects�. The VA very accurately predicts the stable
solitons with N�Nmin, and becomes irrelevant past the point
of N=Nmin, as in that case the approximation assumes a
broad Gaussian ansatz, which is irrelevant in the present set-
ting. The addition of small g00 �weak attraction on the
average� leads to stabilization of the aforementioned weakly
unstable solitons with small amplitudes.

The model can be extended to other physically interesting
situations, especially the two-dimensional one. Results for
that case will be reported elsewhere.
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